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Abstract

The two-dimensional, nonlinear hydroelasticity of a mat-type very large floating structure (VLFS) is studied within

the scope of linear beam theory for the structure and the nonlinear, Level I Green–Naghdi (GN) theory for the fluid.

The beam equation and the GN equations are coupled through the kinematic and dynamic boundary conditions to

obtain a new set of modified GN equations. These equations represent long-wave motion beneath an elastic plate. A set

of jump conditions that are necessary for the continuity (or the matching) of the solutions in the open water region and

that under the structure is derived through the use of the postulated conservation laws of mass, momentum, and

mechanical energy. The resulting governing equations, subjected to the boundary and jump conditions, are solved by

the finite-difference method in the time domain. The present model is applicable, for example, to the study of the

hydroelastic response of a mat-type VLFS under the action of a solitary wave, or a frontal tsunami wave. Good

agreement is observed between the model results and other published theoretical and numerical predictions, as well as

experimental data. The results show that consideration of nonlinearity is important for accurate predictions of the

bending moment of the floating elastic plate. It is found that the rigidity of the structure greatly affects the bending

moment and displacement of the structure in this nonlinear theory.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A very large floating structure (VLFS) with a ‘small’ draft behaves like an elastic plate. The frontal wave of a tsunami

around a VLFS can be described as a solitary wave. In this work, we consider a thin elastic plate under the action of a

solitary wave in shallow water to investigate the dynamic response of a VLFS to a tsunami.

Stoker (1957) studied long waves beneath a floating elastic plate first by focusing his attention on the transmission of

waves beneath a floating breakwater, within the scope of linear wave theory. His work has been extended to three
e front matter r 2007 Elsevier Ltd. All rights reserved.
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dimensions by Evans and Davies (1968). Forbes (1986, 1988) investigated two-dimensional periodic waves beneath an

elastic plate resting on the surface of an infinitely deep fluid, by use of a high-order series expansion technique. Lu

(1991) examined the transmission and reflection of a soliton by a two-dimensional structure. He used the matched

asymptotic-expansion method which gives a relation between the outer solution governed by the Boussinesq equations

and the inner solution governed by the Laplace equation. Takagi (1996, 1997) derived the Boussinesq-class equations

which represent a long-wave motion beneath an elastic plate, and the matching conditions between the ordinary and the

modified Boussinesq equations by employing the matched asymptotic-expansion method. Ertekin and Kim (1999)

studied the hydroelastic behavior of a three-dimensional mat-type VLFS in oblique waves by use of the linear

Green–Naghdi (GN) theory.

In the present work, the Level I GN equations that represent long-wave motion beneath an elastic plate are derived,

and the matching conditions are developed by employing a set of jump conditions. The theory and the numerical

method used are discussed in Sections 2 and 3, respectively. Results, the importance of various parameters of the

problem, and comparisons with the available experimental data are provided in Section 4.
2. Theory

The coordinate system and geometry of the fluid–structure system of the two-dimensional problem are depicted in

Fig. 1. The beam is taken from a strip of unit width from a plate of large aspect ratio (beam length over beam width

ratio is large). The beam is envisioned as the strip of a floating runway that freely floats on the top of Region II, with a

draft d length b and thickness hp. In Fig. 1, m is the mass per unit length of the beam (that is, of unit width). Its

thickness is much smaller than its length so that the Kirchhoff thin-plate theory can be applied. The wave propagates

parallel to the beam-length direction so that the hydroelastic phenomenon also is two-dimensional.

The whole domain is divided into three parts. Regions I and III contain the ordinary shallow-water wave problems.

A nonlinear, long (solitary) wave comes from left and excites the motion of the beam. The inviscid fluid motion is

assumed to be governed by the Level I GN theory [see, e.g., Ertekin and Wehausen (1986)]. The sea floor is flat. The

still-water depth in the open water area is h0, and in Region II, it is h0 � d. We further assume that the runway is

horizontally restrained somehow, and thus, no horizontal motion in the x direction is allowed.

2.1. Governing equations

The governing equations for the motion of the fluid are provided by the Level I GN theory [see, e.g., Green and

Naghdi (1976)]. They can be written in a compact form [see, e.g., Ertekin and Becker (1998)]:

Zt þ
q½ðhþ ZÞu�

qx
¼ 0, (1)

_uþ gZx þ
p̂x

r
¼ �

1

6
½4Zx €Zþ 2ðhþ ZÞð€ZÞx�, (2)

where r is the mass density of water, p̂ is the pressure on the upper surface of water, and Z is the surface displacement,

and uðx; tÞ is the horizontal velocity of fluid particles in the x direction. The subscripts, x and t, denote the partial

derivatives, g is the gravitational acceleration, h the still water depth, and equals to ho in Regions I and III, and to h1 in

Region II. The superposed dot denotes the material derivative, i.e., _Z ¼ Zt þ uðqZ=qxÞ. When there is no plate floating

on the top of the fluid surface, the atmospheric pressure, p̂, is set to zero. In Region II, however, p̂ equals to the pressure

on the bottom of the plate, while the atmospheric pressure on the top of the plate is set to zero.
Region I
Region II

x

z
η

D, b, d, m

h0
h1 = h0-d

x1 x2

Region III

Fig. 1. Definition sketch of the problem.
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It is noted that the integrated pressure through the water column, in the Level I GN theory, is given by [see, e.g.,

Ertekin (1984)]

P ¼ 1
6
rðhþ ZÞ2ð2€Zþ 3gÞ þ p̂ðhþ ZÞ. (3)

Since we are considering long waves, the linear beam theory is applied to the structure, i.e.,

mZtt þDZxxxx þmg ¼ f̂ , (4)

where f̂ is the force acting by water on the bottom of plate, i.e., p̂ times the width of the beam, D is the flexural rigidity

of the plate, and is defined by D ¼ Eh3p=½12ð1� n2Þ�, and E and n are Young’s modulus and Poisson’s ratio of the

plate, respectively. It is noted that the dimension of each term in Eq. (4) is force/length since we are considering a beam

of unit width.

The motion of the fluid and the plate is coupled through the dynamic free-surface condition. We also assume that

the displacement of the plate and the fluid-surface elevation under the bottom of the plate are the same, i.e., no air gap

is allowed.

After we substitute f̂ from Eq. (4) into Eq. (2), and use the fact that the continuity equation is the same as in Eq. (1),

except for the fluid sheet thickness, we can obtain the governing equations for the fluid–plate Region II:

Zt þ
q½ðh1 þ ZÞu�

qx
¼ 0, (5)

_uþ gZx þ
ðmZtt þDZxxxx þmgÞx

r
¼ �

1

6
½4Zx €Zþ 2ðh1 þ ZÞð€ZÞx�. (6)

Eqs. (5) and (6) are the new, modified Level I GN equations (two-dimensional) that are nonlinear.

2.2. Initial and boundary conditions

We assume that there are waves initially ðt ¼ 0Þ and they are at a distance away from the plate. The velocities and

surface elevation are initially set according to the analytical solution of a solitary wave that the Level I GN theory

provides [see, e.g., Ertekin (1984)]. The piston wave-maker generates waves by having its velocity specified such that the

generated waves are consistent with the initial wave inside the domain. In the solitary-wave case, the up-stream

boundary becomes an open boundary after the entire wave enters the domain.

The downstream boundary is an open boundary. The open boundary condition used there is the Orlanski condition,

qO
qt
� c

qO
qx
¼ 0, (7)

where O could be Z or u, and c is the phase velocity of the waves at the numerical boundaries. The minus sign denotes

the left boundary and the plus sign the right boundary.

At the ends of the plate, free-free end boundary conditions of the beam require the vanishing of the bending moment

and shear force. Thus, we have

DZxx ¼ DZxxx ¼ 0 at x ¼ xþ1 and x�2 . (8)

Since we assume that there is no gap between the bottom surface of the beam and the top surface of the fluid layer, the

fluid under the tip of the beam should also satisfy the conditions given by Eq. (8). Because Zxxjxi
¼ 0 and Zxxxjxi

¼ 0

(i ¼ 1; 2) at any time t, Zxxtjxi
¼ 0 and Zxxxtjxi

¼ 0 should be satisfied for all t. By taking the second- and third-order

derivatives about x on both sides of the mass continuity equation, Eq. (5), we obtain the boundary conditions

(at x ¼ xi; i ¼ 1; 2) for the fluid motion under the ends of the beam as

3Zxuxx þ ðhþ ZÞuxxx ¼ 0, (9)

4Zxuxxx þ ðhþ ZÞuxxxx þ Zxxxxu ¼ 0. (10)

2.3. Jump conditions

In the following formulation, only the left side of the elastic plate is treated here because the solution for the other

side is obtained by employing the same technique.
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The appropriate jump conditions are demanded by the theory because the fluid surface is discontinuous at the

juncture of Regions I and II, x ¼ x�1 . Here, the plus sign denotes the limit approaching from the right toward x1, while

the minus sign from the left toward x1. The jump conditions are necessary for having the mass, momentum, and

mechanical energy flux at x ¼ x�1 conserved.

Naghdi and Rubin (1981) provided a set of jump conditions for a flat bottom and steady motion by use of the

conservation laws and when there is a rigid body floating on the fluid surface. Naghdi and Rubin (1981), and also Green

and Naghdi (1986), applied them to a steady-flow problem. However, they additionally required the continuity of the

surface elevation and surface pressure, p̂, or the slope of the surface. In the present study, we cannot avoid

discontinuities in the surface elevation and pressure since the motion of the elastic beam is relative at x ¼ x�1 and xþ1 .

Based on the conservation of mass, momentum, director momentum (moment of vertical momentum), and

mechanical energy (Naghdi and Rubin, 1981), the jump conditions for the case of a floating, elastic body are derived

here. We assume the singularity to be stationary in the horizontal plane and identify the fixed location of the

discontinuity by the vertical line at x ¼ x1. The sea bed is also assumed to be stationary in the present derivation,

although this is not necessary in general.

By use of Leibnitz’s rule, and by following Naghdi and Rubin (1981), the corresponding jump conditions for mass,

horizontal and vertical momentum, director momentum, and energy conservation can be derived:

½½rfu�� ¼ 0 at x ¼ x1, (11)

½½rfuðue1 þ
1
2

we3Þ þ Pe1�� ¼ F at x ¼ x1, (12)

½½ 1
12
rfuwe3�� ¼ L at x ¼ x1, (13)

½½1
2
rfuðu2 þ 1

3
w2 þ gcÞ þ Pu�� ¼ F � Vþ L �W at x ¼ x1, (14)

where eiði ¼ 1; 3Þ are the unit base vectors corresponding to the x and z axes, respectively, f is the thickness of the fluid

sheet, w ¼ _f is the vertical velocity of the water column, and c the mid-position of the fluid sheet, i.e., c ¼ ð�h0 þ ZÞ=2
and c ¼ ð�h0 � d þ ZÞ=2 in the regions without and with the plate, respectively.

In the jump conditions above, we use the notation

½½f �� ¼ f þ � f �, (15)

to mean f þ ¼ limx!xþ
1

f ; f � ¼ limx!x�
1

f , i.e., the values of f on the sides x ¼ xþ1 and x ¼ x�1 of the jump, respectively.

Here, f can be any one of Z, u, f, w, P. We assume that at x ¼ x1, the value of f changes from f � at x ¼ x�1 to f þ at

x ¼ xþ1 . And we define the following:

F ¼ lim
d!0

Z x1þd

x1�d
½p̂Zxe1 þ ðp̄� p̂Þe3�dx, (16)

L ¼ lim
d!0

Z x1þd

x1�d
�
1

2
ðp̄þ p̂Þe3

� �
dx, (17)

F � V ¼ lim
d!0

Z x1þd

x1�d
½p̂Zxuþ ðp̄� p̂Þw=2�dx, (18)

L �W ¼ lim
d!0

Z x1þd

x1�d
�
1

2
ðp̄þ p̂Þw

� �
dx. (19)

Eqs. (18) and (19) can be combined as

F � Vþ L �W ¼ lim
d!0

Z x1þd

x1�d
�p̂ft dx. (20)

Also, from Eqs. (16) and (17), we obtain

lim
d!0

Z x1þd

x1�d
�p̂dx ¼

F

2
þ L

� �
� e3. (21)
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Substituting Eqs. (12) and (13) for F and L in Eq. (21), we obtain

lim
d!0

Z x1þd

x1�d
�p̂dx ¼

r
3
½½fuw��. (22)

When xox1; there is no plate, and thus p̂ ¼ 0. Therefore, Eq. (20) becomes

F � Vþ L �W ¼ lim
d!0

Z x1þd

x1�d
�p̂ft dx ¼ lim

d!0

Z x1þd

x1

�p̂ft dx

¼ � ftjxþ1
lim
d!0

Z x1þd

x1

p̂dx ¼ ftjxþ1

r
3
½½fuw��. ð23Þ

In the case of energy conservation, Eq. (14), the factor, fu which is the mass flux through the matching intersection, is

removed from all the terms without loss of any information. This makes the equation to have nonzero coefficients when

the fluid is still. Eq. (14) then becomes

1

2
r u2 þ

1

3
w2 þ 2gc

� �
þ

P

f

� �� �
¼ ftjxþ1

r
3
½½w�� at x ¼ x1. (24)

One can also derive a set of jump conditions similar to Eqs. (11)–(14) for the other jump point located at x ¼ x2.

3. Numerical scheme

Before discretizing the partial differential equations governing the motion of the fluid and the structure, i.e., Eqs. (1)

and (2), in the open water, and Eqs. (5) and (6) where the structure is located, the time derivatives of Z are removed by

the application of the mass continuity equation, Eq. (1). This allows the governing equations to be decoupled, and an

explicit time-stepping method can be used to solve the problem.

The fourth-order Runge–Kutta method is used to march in time. The second-order accurate central-difference

formulas are used for the spatial derivatives. The mass continuity equation can be solved in a straight-forward manner.

In the momentum equation, the time derivatives involve the spatial derivatives, e.g., ut, uxt, and uxxt, which cannot be

solved explicitly. These can be solved through a simultaneous set of linear equations inn two steps. To use the central-

difference method for the derivatives of u at x�1 , fictitious or ghost points are introduced on each side. To determine the

numerical accuracy of the predictions, both the mass and the energy conservation were monitored in time. Moreover, to

make the numerical scheme stable, the unwanted saw-tooth-oscillations of high wave frequency were removed by the

use of a five-point filtering formula that Demirbilek and Webster (1992) used successfully.
4. Results and discussion

Based on the theory and the numerical procedure described above, the hydroelastic characteristics of a mat-type

floating runway are investigated. The convergence and accuracy are discussed first. Then the model is verified by

comparing the present results with the available numerical predictions and experimental data.

4.1. Convergence of the present scheme

In the convergence study, the computations were carried out for a beam with length b ¼ 1km and draft d ¼ 5m. The

nondimensional stiffness, D=rgh4 is 3.2. The water depth is assumed to be 50m. This physical model is similar to the one

studied by Kashiwagi (1996), except that the length of the plate is assumed to be infinite in the present convergence study.

The computational domain is discretized into a number of intervals by the finite-difference grid. The convergence is

tested by increasing the number of grid intervals on the beam. As an example, Fig. 2 shows the convergence of the

maximum, absolute values of the displacement and bending moment along the structure for increasing number of grid

intervals, N. The maximum value is taken at each grid of the plate for the whole process when the solitary wave passes

through the plate. It is obvious that the maximum response converges uniformly as the number of grid intervals increases.

4.2. Verification of the present method

To test the validity of the present theory and its numerical implementation, comparisons are first made with the

experimental data of Liu et al. (1998). In their experiments, they use a wave-maker at the left-side boundary. In the
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Fig. 3. Locations of the wave gauges.
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present work, the generation of the solitary wave is different. We use the exact, analytical solitary-wave solution [see,

e.g., Ertekin (1984)] of the Level I GN equations to specify the initial velocity and surface elevation.

The experimental structure used a 10m long and 20mm thick polyethylene plate with a modulus of elasticity of

around 950MPa, density of 0:914kg=m3 and Poisson’s ratio of 0.3. The water depth in the experiments was 0.4m. The

incoming solitary wave was from the left side, and its amplitude, A, defined as the height from the still-water level to its

peak was 0.04m. There were five wave gauges (Fig. 3): one in upstream open water (Gauge 1), three in region II

(Gauges 2–4), and one in the downstream open region (Gauge 5), as shown in Fig. 3.

The values of the corresponding nondimensionalized flexural rigidity and solitary-wave amplitude are the following:

D=rgh4o ¼ 2:77 and A=ho ¼ 0:1, respectively. To match the phase of the solitary wave in the experiments, results in the
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present calculations are shifted so that both peaks occur at the same time. This is also done for the other cases discussed

in this section.

In Fig. 4, we present a comparison of our results and experimental data of Liu et al. (1998) for free-surface elevation

and structural deformation. Figs. 4(a)–(e) show the comparisons of the time history of the surface elevation (Regions I

and III) or structural displacements (Region II) recorded at the wave gauges. The incoming wave profile in Fig. 4(a)

shows good agreement with data. Figs. 4(b)–(d) show the comparison of the experimental data and present calculations

for the plate displacement. Fig. 4(e) shows the free-surface elevation at the downstream wave gauge. The present

calculations and measured data agree well on the plate and in the open water, and the largest difference occurs at the

downwave side of the plate. End effects and flow separation (vortex shedding) in the experiments cannot be modeled in

the present study.
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As a second comparison, we now consider the experimental data of Liu and Sakai (2000) in Fig. 5. The experimental

study used a polyethylene plate with length b ¼ 10m, mass density rs ¼ 0:914 kg=m3, n ¼ 0:3, and E ¼ 550MPa. The

displacement and surface elevation were measured along the centerline of the flume. And d ¼ 0:02m, ho ¼ 0:3m, and

A ¼ 0:05m. The wave gauge positions are the same as in Fig. 3, but distances are different: G1 is 3m from the upstream

tip, G2, G3, and G4 are in Region II and are 1.5, 4.5, and 8.5m from the upstream tip, respectively, and G5 is 3m from

the downstream plate edge in the open water.

Fig. 5(a) shows results of the comparison for the incoming wave. The free-surface profile and its peak are matched

well, including the small tails representing reflected and radiated waves by the structure. The plate displacement and the

downwave open water free-surface elevation agree well in general (Figs. 5(b)–(e)).

The solitary wave could not maintain its shape and speed when it enters into the plate–fluid region. This

phenomenon can be observed in Figs. 5(c) and (d), and in Fig. 4(d), where dispersion and nonlinearity are no longer

balanced. This is why the smaller leading waves occur. When relative stiffness becomes larger, such waves appear earlier.

The kinematics and the pressure on the VLFS for the G–N solution are presented next. However, there is no

experimental data available for comparison. Particle velocities at the water surface in both horizontal and vertical

directions, i.e., u and w, respectively, are shown in Fig. 6. The snap shots in Figs. 6(a)–(d) correspond to the time of

the surface elevation peak at Gauges 1–4, respectively. The dynamic pressure acting on the VLFS is presented in

Figs. 7(a)–(c) at the time of the surface elevation peak at Gauges 2–4, respectively.

4.3. Comparison with the solutions of the Boussinesq equations

The present results are compared in Figs. 8 and 9 with the results of Takagi (1997) who used the Boussinesq

equations [see, e.g., Wu (1981)] in shallow water, and linear beam theory with the inertial term for the structure

neglected.
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In this comparison, we have used b=ho ¼ 7:30, D=rgh4o ¼ 3:33 [rather than D=rgh4o ¼ 1:11 as in Takagi (1997)1],

d=ho ¼ 0:3, A=ho ¼ 0:2. The solitary wave is propagating from right to left. The time series of the free-surface elevation

and the beam displacement are compared for Dt=ðho=gÞ0:5 ¼ 0:0005 and Dx=ho ¼ 0:06.
Good agreement is observed at small time values. At large time values, however, the discrepancy becomes more

apparent, especially for the higher solitary-wave amplitude (A=ho ¼ 0:4) case in Fig. 9. This is because of the use of

different theories. The theoretical solitary-wave profile in the GN theory is wider than that obtained from the Boussinesq

equations (Ertekin, 1984; Ertekin andWehausen, 1986). In addition, different matching schemes are used. In the laboratory

data, small oscillations occur in the open water region near the upstream end of the beam. This is seen in the results of

Takagi (1997) in Figs. 8(b) and (c) and in Figs. 9(b) and (c), but this kind of oscillation does not appear in the present

calculations. The agreement with data is generally better for small wave amplitudes where the oscillations are less.

4.4. Effects of stiffness and nonlinearity

The effects of the beam stiffness and nonlinearity of the solitary wave on the hydroelastic response of the same

runway considered in Section 4.1 are further studied. A comparison of the maximum displacement and bending

moment acting on the beam for various stiffnesses is shown in Figs. 10(a) and (b). The solitary-wave amplitude is

A=ho ¼ 0:2, and the nondimensional stiffness, D=rgh4, values are 0.8, 3.2, and 12.8.

The results show that the displacement and bending moment depend on the stiffness, such that, as nondimensional

stiffness increases, the displacement decreases, while the bending moment increases. The stiffness does not significantly
1We thank Prof. Takagi for pointing out the correct stiffness used by him.
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Fig. 8. Comparison of the present results with the solutions of the Boussinesq equations for A=h0 ¼ 0:2, D=rgh4o ¼ 3:33.
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affect the maximum displacement in the upstream tip area. This is because a stiffer plate or structure can provide a

larger reaction force to resist a change in its shape, and a softer structure is easier to move with the fluid surface.

The maximum hydroelastic response of the structure is shown in Fig. 11 for different wave amplitudes. A solitary

wave of small amplitude induces larger relative displacements (note that in Fig. 11 wave amplitude is used in the

normalization). Bending moments decrease with wave amplitude. The responses for A=h0 ¼ 0:1 and 0.4 are different.

This shows that the nonlinearity becomes increasingly important for larger waves.
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5. Conclusions

A modified set of Level I GN equations that represent a long wave beneath an elastic plate have been derived. Jump

conditions are enforced in the solution of the governing equations. The solutions of the ordinary GN equations in the

open water region and that of the modified GN equations under the structure are obtained by a finite-difference

method. Numerical results showing the behavior of a solitary wave beneath an elastic plate are presented and compared

with the existing predictions and experimental data. These results demonstrate that the nonlinearity of the fluid motion
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and the stiffness of the structure are important in the determination of the hydroelastic response of a VLFS to solitary

waves. A particularly interesting feature of the results here is that, the more nonlinear the incoming wave is, the smaller

the structural displacements are, but the larger the bending moments are.
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